PARTICLE GENERATION AND DISPERSION MEASUREMENTS

The LTADS "Dust Experiments"

May 2003 – May 2004

Richard VanCuren, Ph.D. - ARB Research

Goal

Observe the Dynamics of Ambient Particles in the Lake Tahoe Basin

Emphasis on "Fugitive Dust"
Spatial and Temporal Patterns
Micro- and Meso- Scale Dispersion
Evolution of Size Distributions
Effects of Near-Source Deposition
Contribute to Conceptual Model of Tahoe Basin
Circulation

Measurement Concepts

Time- and Size- Resolved Measurements

 Understand LTADS Measurement Sites in Their Microenvironmental Context

- Link to LTADS Measurement Aerosol Speciation
- Develop Dispersion / Deposition Curves for Road Dust

Particle Counter Instrument

CLIMET CI 500 Particle Counter

- Count Bins: 0.5-1, 1-2.5, 2.5-5, 5-10, 10-25, 25+ μm
- Time Resolution Down to 1-Minute
- Supporting Data:
 - **Temperature**
 - RH
 - Flow Rate
- Autonomous Operation
 500 Sample Memory
 Internal Battery or Line Power

Particle Counter Intercomparison

Mass-Count Relationships Data Reduction Strategy

- Convert counts to equivalent volume of spherical particles
- Convert volume to mass by assumed particle density

SIZE BIN	GEOMETRIC MEAN DIAMETER	ASSUMED DENSITY
0.5-1 μm	0.71	1 g/cc
1 - 2.5 μm	1.58	1 g/cc
2.5 - 5 μm	3.54	1.5 g/cc
5 - 10 μm	7.07	2.0 g/cc
10 - 25 μm	15.81	2.5 g/cc
25 + μm	31.62	2.5 g/cc

Mass Estimation Validation

Experimental Setups

- Single Instrument
 - Spot Measurements (1hr 1 day)
 - Time SeriesMulti-day20-minute Time Resolution
- Arrays
 - Downwind Transects with 2 5 Samplers
 - 1- minute Time Resolution

Experimental Program

- Montane "Background" Aerosol Load
 - Spot Samples and Time Series from Undeveloped Sierra Sites
- Inter-Site Comparison for LTADS Sites
 - BLIS, Sandy Way, and SOLA
 - Total PM, Size Distributions, Diurnal Cycles
- Road Dust
 - SOLA, Hwy 50 in SLT, Hwy 267 in Kings Beach

Montane "Background" Aerosol

Diurnal Variation at Sandy Way

Diurnal Patterns at Sandy Way and SOLA

Lake Breeze vs Land Breeze PM at SOLA Size Distributions

Road Dust Experiment – Hwy 267

Modeled Dust Drop-off – Hwy 267

FRACTION OF ROADSIDE PARTICLES IN AIR DOWNWIND HWY 267 - 5/19/04

Road Dust Decay at SOLA Shallow Layer Downslope Flow

SOLA Falloff and RV Franz Data

Applying these curves:

- Concentrations observed on the RV Franz in the urban shore zone (up to 500 m) would be reached about 250 m offshore
- Concentrations measured on the RV
 Franz in open water (>1km) would be
 reached about 500 m from shore.
- Concentration fall-off over water is strong, but slower than on land, consistent with meteorological theory.

CONCLUSIONS

- PM Concentrations are Related to Local Activity
- PM Concentrations are Strongly Modulated by Local Meteorology
- PM Concentrations and Diurnal Patterns Have High Spatial Heterogeneity
- Concentrations of Large Particles Decay Rapidly Downwind
- Downwind Concentration Decay is Stronger Over Land Than Over Water.
- Land and Water Measurements are Consistent